THE STRUCTURE OF TAMARISCOL, A NEW PACIFIGORGIANE SESQUITERPENOID ALCOHOL FROM THE LIVERWORT FRULLANIA TAMARISCI

Joseph D. Connolly, * Leslie J. Harrison and David S. Rycroft (Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland)

<u>Summary</u> Tamariscol, a new sesquiterpenoid alcohol with the rare pacifigorgiane carbon skeleton, is a major constituent of the liverwort <u>Frullania tamarisci</u>, collected in Scotland. It has been assigned the structure and relative configuration (1) on the basis of ^{13}C (including 2D INADEQUATE) and ¹H nmr spectroscopic evidence.

The liverwort <u>Frullania tamarisci</u> is associated with the incidence of allergenic contact dermatitis among lumberjacks.¹ The main active principle is the sesquiterpenoid lactone (-)-frullanolide (2). Several other sesquiterpenoid lactones have also been reported from the same source.¹ Reinvestigation of <u>F. tamarisci</u> collected in various locations in Scotland, mainly from roadside dry-stone walls, has revealed the presence, in addition to the known lactones frullanolide (2) (0.030%), γ -cyclocostunolide (0.005%) and costunolide (0.002%), of a new major constituent, tamariscol, a pungent oil (0.032% of dried plant material), which has been assigned structure (1). The only other recorded example of a sesquiterpenoid with this carbon skeleton is the ichthyotoxin pacifigorgiol (3) from the gorgonian Pacifigorgia adamsii.²

Tamariscol (1) $[\alpha]_{D}$ + 19.7 (c, 1.1 in CHCl₃), v_{max} (CCl₄) 3620 cm⁻¹, m/z 222.1991 (C₁₅H₂₆O requires m/z 222.1984) shows in its nmr spectra (CDCl₃ solution) a trisubstituted double bond $[\delta_{H}$ 5.07 (sept., J 1.5 Hz, H-10); δ_{C} 121.9 (d, C-10) and 136.4 (s, C-11)], a tertiary alcohol $[\delta_{C}$ 79.0 (s, C-2)], two vinyl methyl groups $[\delta_{H}$ 1.88 (d, J 1.5 Hz, 3H-13) and 1.75 (d, J 1.5 Hz, 3H-12); δ_{C} 28.5 (C-12) and 20.3 (C-13)], two secondary methyl groups $[\delta_{H}$ 0.92 (d, J. 6.6 Hz, 3H-15) and 0.87 (d, J 6.6 Hz, 3H-14); δ_{C} 15.4 (C-14) and 19.2 (C-15)] which together with four methines $[\delta_{C}$ 59.0 (C-1), 46.0 (C-3), 50.3 (C-6) and 40.1 (C-7)] and four methylenes $[\delta_{C}$ 33.3 (C-4), 30.6 (C-5), 32.2 (C-8) and 24.3 (C-9)] constitute a bicarbocyclic system. At first sight the presence of an isobutenyl group and two secondary methyls suggested a ring-contracted cadinane skeleton as in mutisianthol (4)³ or a ring-contracted guaiane skeleton as in valereneenol (5).⁴ However the 2D INADEQUATE ¹³C nmr spectrum^{5,6} of tamariscol clearly established the basic carbon skeleton as in (1) and also allowed unambiguous assignment of all the ¹³C resonances.

The 360 MHz ¹H nmr spectrum of tamariscol was not sufficiently resolved to reveal the relative stereochemistry. Addition of Eu(fod)₃ [100 MHz spectrum, CDCl₃ solution, 135 mM tamariscol, 75 mM Eu(fod)₃] caused significant downfield shifts of the vinyl proton (H-10, $\Delta\delta$ 2.61), a vinyl methyl (3H-13, $\Delta\delta$ 2.90), a secondary methyl (3H-14, $\Delta\delta$ 2.65) and its associated methine (H-3, $\Delta\delta$ 5.21), and one other methine (H-1, $\Delta\delta$ 5.63), the ring junction proton α to the hydroxyl group. H-3 (ddq, J 4.5, 12.0, 6.5 Hz) has a large coupling to a neighbouring proton (H-4B) and is therefore axial (α). The hydroxyl group must be equatorial (α) to account for the large shift of H-3 on addition of Eu(fod)₂. H-1 (dt, J 8.0, 11.0 Hz) is also axial (α) as indicated by its

1401

large couplings which also suggest that the ring junction is <u>trans</u>. The H-6 and H-7 methines could not be identified clearly even at 360 MHz in different solvents and it was not possible to observe the size of $J_{6,7}$. However the ¹³C shift of the methyl group attached to C-7 (δ 19.2) is virtually identical to the corresponding methyl in pacifigorgiol (δ 19.0 or 19.4) indicating that it must be β . An α -methyl group would be expected to be considerably more shielded than in pacifigorgiol as a result of two additional γ -gauche interactions (with C-1 and C-9). Thus tamariscol has the relative configuration as shown in (1).

The biogenesis of the pacifigorgiane carbon skeleton is a matter for speculation. One possible derivation is from a caryophyllene precursor (6, arrows). It is of interest to note that β -caryophyllene (of unknown absolute configuration) is the most widespread sesquiterpene in the Frullaniaceae although it has not been observed in <u>F. tamarisci</u>.¹ The occurrence of pacifigorgiane and dolabellane⁷ terpenoids in both marine organisms and liverworts may be of significance in terms of the evolutionary origin of the Hepaticae.

References

1. Y. Asakawa, Fortschr. Chem. org. Naturst., 42, 1-285 (1982).

- R.R. Izac, S.E. Poet, W. Fenical, D. Van Engen and J. Clardy, <u>Tetrahedron Letters</u>, <u>23</u>, 3743 (1982).
- 3. F. Bohlmann, C. Zdero and N. Le Van, Phytochemistry, 18, 99 (1979).
- M. Kobayashi, T. Yasuzawa, Y. Kyogoku, M. Kido and I. Kitagawa, <u>Chem. Pharm. Bull. Japan</u>, <u>30</u>, 3431 (1982).
- 5. A. Bax, R. Freeman, T.A. Frenkiel and M.H. Levitt, <u>J. Magn. Res</u>., <u>43</u>, 478 (1981).
- 6. T.H. Mareci and R. Freeman, J. Magn. Res., 48, 158 (1982).
- 7. J.D. Connolly, Revista Latinoamer. Quim., 12, 121 (1981).

(Received in UK 27 January 1984)